Vigtigste

Hypertension

Menneskelig hjerte muskel

På trods af at hjertet kun er halvdelen af ​​den samlede legemsvægt, er det menneskets vigtigste organ. Det er den normale funktion af hjertemusklen, der muliggør fuld drift af alle organer og systemer. Hjertets komplekse struktur er bedst tilpasset fordelingen af ​​arterielle og venøse blodstrømme. Fra medicinsk synspunkt er det hjertesygdommen, der optræder først og fremmest blandt menneskelige sygdomme.

Hjertet er placeret i brysthulen. Der er en brystben foran den. Orgelet skiftes lidt til venstre i forhold til brystbenet. Det er placeret på niveauet af den sjette og ottende thoracale hvirvler.

Fra alle sider er hjertet omgivet af en særlig serøs membran. Denne membran kaldes perikardiet. Det danner sit eget hulrum kaldet perikardialet. At være i dette hulrum gør det lettere for kroppen at glide imod andre væv og organer.

Ud fra radiologikriterierne kendetegnes følgende varianter af hjertemuskulaturens position:

  • Den mest almindelige - skrå.
  • Som om suspenderet, med forskydningen af ​​den venstre grænse til midterlinien - lodret.
  • Spred på den underliggende membran - vandret.

Varianter af positionen af ​​hjertemusklen afhænger af en persons morfologiske konstitution. I astenisk er det lodret. I normostenic er hjertet skråt, og i hypersthenisk er det vandret.

Hjertemusklen har en kegleform. Orgelens bund udvides og trækkes baglæns og opad. Hovedkarrene passer til organets bund. Hjertets struktur og funktion - er uløseligt forbundet.

Følgende overflader er isoleret fra hjertemusklen:

  • front vendt sternum;
  • bunden, vendt til membranen;
  • lateral mod lungerne.

Hjertemuskulaturen visualiserer rillerne og afspejler placeringen af ​​dens indre hulrum:

  • Coronoid sulcus. Det er placeret i bunden af ​​hjertemusklen og ligger på grænsen til ventrikler og atria.
  • Interventricular furrows. De løber langs organets forreste og bageste overflade langs grænsen mellem ventriklerne.

Menneskets hjerte muskel har fire kamre. Den tværgående partition opdeler den i to hulrum. Hvert hulrum er opdelt i to kamre.

Et kammer er atrialt, og det andet er ventrikulært. Venøs blod cirkulerer i venstre side af hjertemusklen, og arteriel blod cirkulerer i højre side.

Det højre atrium er et muskelhulrum, hvor den øvre og nedre vena cava åbner. I den øvre del af atria er der et fremspring - et øje. Atriumets indre vægge er glatte, med undtagelse af fremspringets overflade. I området af den tværgående septum, som adskiller det atriale hulrum fra ventriklen, er der en oval fossa. Det er helt lukket. I prænatalperioden blev et vindue åbnet på sin plads, hvorved venet og arterielt blod blev blandet. I den nedre del af højre atrium er der en atrioventrikulær åbning, gennem hvilken venet blod passerer fra højre atrium til højre ventrikel.

Blodet går ind i højre ventrikel fra højre atrium på tidspunktet for dets sammentrækning og afslapning af ventriklen. På tidspunktet for sammentrækning af venstre ventrikel, skubbes blod ind i lungekroppen.

Den atrioventrikulære åbning er blokeret af ventilen med samme navn. Denne ventil har også et andet navn - tricuspid. Ventilens tre ventiler er folder af den indre overflade af ventriklen. Særlige muskler er fastgjort til ventilerne, som forhindrer dem i atter i atriumhulen på tidspunktet for ventrikulær kontraktion. På den indre overflade af ventriklen er et stort antal tværgående muskelskinner.

Hullet i pulmonal stammen er blokeret af en speciel semilunarventil. Når det lukker, forhindrer det tilbagestrømning af blod fra lungekroppen, når ventriklerne slapper af.

Blodet i venstre atrium går ind i de fire lunger. Det har en bulge-eyelet. Cusp musklerne er veludviklede i øret. Blodet fra venstre atrium går ind i venstre ventrikel gennem venstre atrial ventrikulær åbning.

Venstre ventrikel har tykkere vægge end højre. På den indre overflade af ventriklen er veludviklede muskelkrydsninger og to papillære muskler tydeligt synlige. Disse muskler med elastiske senetråder er fastgjort til den venstre-bladede venstre atrioventrikulære ventil. De forhindrer inversionen af ​​ventilbladene ind i hulrummet i venstre atrium på tidspunktet for sammentrækning af venstre ventrikel.

Aorta stammer fra venstre ventrikel. Aorta er dækket af en tricuspid semilunarventil. Ventiler forhindrer tilbagelevering af blod fra aorta til venstre ventrikel på tidspunktet for afslapning.

I forhold til andre organer er hjertet i en bestemt position ved hjælp af følgende fiksationsformationer:

  • store blodkar
  • ringformede fibrøse vævsaggregationer;
  • fibrøse trekanter.

Hjertemuskelvæggen består af tre lag: det indre, midterste og ydre:

  1. 1. Det indre lag (endokardium) består af en bindevæv plade og dækker hele indre overflade af hjertet. Tendon muskler og filamenter fastgjort til endokardiet, danner hjerteventiler. Under endokardiet er en yderligere kældermembran.
  2. 2. Mellemlaget (myokardiet) består af striated muskelfibre. Hver muskel fiber er en klynge af celler - kardiomyocytter. Visuelt er der mellem fibrene synlige mørke striber, som er indsatser, der spiller en vigtig rolle i transmissionen af ​​elektrisk excitation mellem kardiomyocytter. Udenfor er muskelfibre omgivet af bindevæv, som indeholder nerver og blodkar, som giver trofisk funktion.
  3. 3. Det ydre lag (epicardium) er et serøst blad tæt fusioneret med myokardiet.

I hjertemusklen er et specielt organlednings system. Det deltager i den direkte regulering af rytmiske sammentrækninger af muskelfibre og intercellulær koordinering. Celler i hjerte muskel-systemet, myocytter, har en særlig struktur og rig indervation.

Hjertets ledende system består af en klynge af noder og bundter, der er organiseret på en særlig måde. Dette system er lokaliseret under endokardiet. I højre atrium er en sinus node, som er den vigtigste generator af hjerteopblussen.

Den interatriale bundle, som er involveret i den samtidige atriale sammentrækning, afgår fra dette knudepunkt. Derudover strækker sig tre bundter af ledende fibre til den atrioventrikulære knude, der er lokaliseret i området for koronar sulcus, fra sinus-atrialenoden. Store grene af det ledende system brydes op i mindre og derefter til de mindste, der danner et enkelt ledende netværk af hjertet.

Dette system sikrer samtidig arbejde i myokardiet og koordineret arbejde af alle afdelinger i kroppen.

Perikardiet er en skal, der danner et hjerte rundt om hjertet. Denne membran adskiller pålideligt hjerte muskler fra andre organer. Perikardiet består af to lag. Tæt fibrøs og tynd serøs.

Det serøse lag består af to ark. Mellem arkene dannes et rum fyldt med serøs væske. Denne omstændighed gør det muligt for hjertemusklen at glide komfortabelt under sammentrækningerne.

Automatisme er den vigtigste funktionelle kvalitet af hjertemusklen at krympe under påvirkning af impulser, der genereres i det selv. Automatikken af ​​hjerteceller er direkte relateret til egenskaberne af cardiomyocytmembranen. Cellemembranen er semipermeabel for natrium- og kaliumioner, som danner et elektrisk potentiale på overfladen. Den hurtige bevægelse af ioner skaber betingelserne for at øge hjertemuskulaturens spænding. Når den elektrokemiske balance er nået, er hjertemusklen ikke uundværlig.

Myokardiums energiforsyning opstår på grund af dannelsen i mitokondrier af muskelfibre af energisubstraterne ATP og ADP. Til fuld operation af myokardiet er en tilstrækkelig blodtilførsel nødvendig, hvilket tilvejebringes af koronararterierne, der strækker sig fra aortabuen. Hjertemuskelens aktivitet er direkte relateret til arbejdet i centralnervesystemet og systemet med hjertereflekser. Reflekser spiller en regulerende rolle, der sikrer, at hjertet fungerer optimalt under konstant forandringer.

Funktioner af nervøs regulering:

  • adaptiv og udløsende effekt på hjertemuskulaturens arbejde
  • afbalancering af metaboliske processer i hjertemusklen;
  • humoristisk regulering af organaktivitet.

Hjertets funktioner er som følger:

  • Kunne udøve pres på blodgennemstrømning og oxygenatorganer og væv.
  • Det kan fjerne fra kroppen kuldioxid og affaldsprodukter.
  • Hver kardiomyocyt er i stand til at blive spændt af impulser.
  • Hjertemusklen er i stand til at udføre impulsen mellem kardiomyocytter gennem et specielt ledningssystem.
  • Efter ophidselse er hjertemusklen i stand til at indgå ved atrierne eller ventriklerne, der pumper blod.

Hjertet er et af menneskets mest perfekte organer. Det har et sæt fantastiske kvaliteter: magt, utrættelighed og evne til at tilpasse sig de konstant skiftende miljøforhold. Takket være hjertets arbejde kommer ilt og næringsstoffer ind i alle væv og organer. At det giver kontinuerlig blodgennemstrømning i hele kroppen. Den menneskelige krop er et komplekst og koordineret system, hvor hjertet er den vigtigste drivkraft.

Egenskaber for hjertemusklen og dens sygdomme

Hjertemusklen (myokardiet) i strukturen af ​​det menneskelige hjerte er placeret i mellemlaget mellem endokardiet og epicardiet. Det er dette, der sikrer uafbrudt arbejde på "destillation" af iltet blod i alle organer og systemer i kroppen.

Enhver svaghed påvirker blodgennemstrømningen, kræver en kompenserende tilpasning, harmonisk funktion af blodforsyningssystemet. Utilstrækkelig tilpasningsevne forårsager et kritisk fald i effektiviteten af ​​hjertemusklen og dens sygdom.
Udholdenhed af myokardiet er tilvejebragt af dets anatomiske struktur og udstyret med evner.

Strukturelle træk

Det accepteres af hjertevægens størrelse for at bedømme udviklingen af ​​det muskulære lag, fordi epikardiet og endokardiet normalt er meget tynde skaller. Et barn er født med samme tykkelse af højre og venstre ventrikel (ca. 5 mm). Ved ungdomsårene øges venstre ventrikel med 10 mm og den højre med kun 1 mm.

I en voksen sundt person i afslapningsfasen varierer tykkelsen af ​​venstre ventrikel fra 11 til 15 mm, den rigtige - 5-6 mm.

Funktion af muskelvæv er:

  • striber striation dannet af myofibriller af cardiomyocytceller;
  • Tilstedeværelsen af ​​fibre af to typer: tynd (aktinisk) og tyk (myosin), forbundet med tværgående broer;
  • sammensatte myofibriller i bundter af forskellig længde og retning, som giver dig mulighed for at vælge tre lag (overflade, indre og mellemstore).

Morfologiske træk ved strukturen giver en kompleks mekanisme til sammentrækning af hjertet.

Hvordan samarbejder hjertet?

Kontraktilitet er et af myokardiumets egenskaber, som består i at skabe rytmiske bevægelser af atrierne og ventriklerne, så blod kan pumpes ind i karrene. Hjertets kamre går konstant igennem 2 faser:

  • Systole - forårsaget af kombinationen af ​​actin og myosin under påvirkning af ATP energi og frigivelse af kaliumioner fra celler, mens tynde fibre glider langs tykke og bjælker falder i længden. Beviste muligheden for bølgelignende bevægelser.
  • Diastole - der er en afslapning og adskillelse af actin og myosin, genoprettelsen af ​​udnyttet energi på grund af syntese af enzymer, hormoner, vitaminer opnået ved "broerne".

Det er blevet fastslået, at kraften af ​​sammentrækning tilvejebringes af calcium inde i myocytter.

Hele hjertets sammentrekning, herunder systole, diastol og en generel pause bag dem, med en normal rytme, der passer til 0,8 sek. Det begynder med atrielsystolen, blodet er fyldt med ventrikler. Så atrierne "hvile", bevæger sig ind i diastolfasen og ventrikelkontrakten (systole).
At tælle tiden for "arbejde" og "hvile" af hjertemusklen viste, at sammentrækningen udgør 9 timer og 24 minutter om dagen og til afslapning - 14 timer og 36 minutter.

Sekvensen af ​​sammentrækninger, tilvejebringelsen af ​​fysiologiske træk og kroppens behov under træning er forstyrrelser afhængig af forbindelsen mellem myokardiet med de nervøse og endokrine systemer, evnen til at modtage og "afkode" signaler for aktivt at tilpasse sig de menneskelige levevilkår.

Hjertemekanismer til reduktion

Egenskaberne af hjertemusklen har følgende mål:

  • støtte myofibrill sammentrækning
  • give den rigtige rytme til optimal fyldning af hulrummene i hjertet;
  • for at bevare muligheden for at skubbe blodet i nogen ekstreme betingelser for organismen.

For dette har myokardiet følgende evner.

Excitability - myocytes evne til at reagere på eventuelle indkommende patogener. Fra over-tærskel stimuleringer beskytter cellerne sig med en tilstand af refraktoritet (tab af ophidsningsevne). I den normale kontraktionscyklus skelne mellem absolut refraktoritet og relativ.

  • I perioden med absolut refraktoritet, fra 200 til 300 ms, svarer ikke myokardiet selv til superstrengede stimuli.
  • Når relativ kun kan reagere på stærke nok signaler.

Ledningsevne - ejendommen til at modtage og transmittere impulser til forskellige dele af hjertet. Det giver en speciel type myocytter med processer, der ligner neuronerne i hjernen.

Automatisme - evnen til at skabe indre myokardiums eget handlingspotentiale og forårsage sammentrækninger selv i den isolerede form fra organismen. Denne ejendom tillader genoplivning i nødstilfælde, for at bevare blodtilførslen til hjernen. Værdien af ​​det lokaliserede netværk af celler, deres klynger i knuderne under donortransplantation er stor.

Værdien af ​​biokemiske processer i myokardiet

Kardiomyocyternes levedygtighed tilvejebringes ved tilførsel af næringsstoffer, oxygen og energisyntese i form af adenosintrifosfat.

Alle biokemiske reaktioner går så vidt muligt under systole. Processerne kaldes aerob, fordi de kun er mulige med en tilstrækkelig mængde ilt. I minuttet forbruges venstre ventrikel for hver 100 g af massen 2 ml ilt.

Til energiproduktion anvendes leveret blod:

  • glucose,
  • mælkesyre
  • ketonlegemer,
  • fedtsyrer
  • pyruviske og aminosyrer
  • enzymer,
  • B-vitaminer,
  • hormoner.

I tilfælde af en stigning i hjertefrekvensen (fysisk aktivitet, spænding) øges behovet for oxygen med 40-50 gange, og forbruget af biokemiske komponenter øges også betydeligt.

Hvilke kompensationsmekanismer har hjertemusklen?

Hos mennesker forekommer patologi ikke så længe kompensationsmekanismerne virker godt. Det neuroendokrine system er involveret i regulering.

Den sympatiske nerve leverer signaler til myokardiet om behovet for forbedrede sammentrækninger. Dette opnås ved en mere intensiv metabolisme, øget ATP-syntese.

En lignende virkning forekommer med øget catecholaminsyntese (adrenalin, norepinephrin). I sådanne tilfælde kræver myocardiums forstærkede arbejde en øget udbud af ilt.

Vagusnerven hjælper med at reducere hyppigheden af ​​sammentrækninger under søvn i hvileperioden for at opretholde iltforretninger.

Det er vigtigt at tage hensyn til tilpasningsmekanismerne.

Takykardi er forårsaget af stagnerende strækning af munden af ​​hule vener.

Refleksbremsning af rytmen er mulig med aortastensose. Samtidig irriterer øget tryk i hulrummet i venstre ventrikel enden af ​​vagusnerven, bidrager til bradykardi og hypotension.

Varigheden af ​​diastol stiger. Gunstige betingelser skabes for hjerteets funktion. Derfor betragtes aortastensose som en godt kompenseret defekt. Det giver patienterne mulighed for at leve i en avanceret alder.

Hvordan behandles hypertrofi?

Normalt forlænges den øgede belastning hypertrofi. Vægtykkelsen af ​​venstre ventrikel stiger med mere end 15 mm. I formationsmekanismen er det vigtige punkt, at kapillær spiring er dybt ind i muskelen. I et sundt hjerte er antallet af kapillærer pr. Mm2 af hjertemuskelvæv omkring 4000, og i hypertrofi falder indekset til 2400.

Derfor betragtes staten op til et bestemt punkt som kompenserende, men med en betydelig fortykning af væggen fører til patologi. Normalt udvikler den sig i den del af hjertet, som skal arbejde hårdt for at skubbe blod gennem en indsnævret åbning eller for at overvinde forhindringen af ​​blodkar.

Hypertrophied muskel kan bevare blodgennemstrømning for hjertefejl i lang tid.

Muskel i højre ventrikel er mindre udviklet, det virker mod et tryk på 15-25 mm Hg. Art. Derfor er kompensation for mitral stenose, pulmonal hjerte ikke holdt i lang tid. Men retventrikulær hypertrofi har stor betydning ved akut myokardieinfarkt, hjerteaneurisme i venstre ventrikelområde, lindrer overbelastning. Bevist betydelige træk ved de rigtige sektioner i træning under træning.

Kan hjertet tilpasse sig arbejde under hypoxi?

En vigtig egenskab ved tilpasning til arbejde uden tilstrækkelig oxygenforsyning er den anaerobe (oxygenfri) proces af energisyntese. En meget sjælden forekomst for menneskelige organer. Den er kun inkluderet i nødsituationer. Tillader hjertemusklen at fortsætte sammentrækninger.
De negative konsekvenser er ophobning af nedbrydningsprodukter og træthed af muskelfibriller. En hjertesyklus er ikke nok til energisyntese.

Imidlertid er en anden mekanisme involveret: vævshypoxi forårsager refleksivt binyrerne at producere mere aldosteron. Dette hormon:

  • øger mængden af ​​cirkulerende blod;
  • stimulerer en stigning i indholdet af røde blodlegemer og hæmoglobin;
  • styrker venøs strøm til højre atrium.

Så det giver dig mulighed for at tilpasse kroppen og myokardiet til manglen på ilt.

Hvordan virker myokardiel patologi, mekanismer af kliniske manifestationer

Myokardie sygdomme udvikles under påvirkning af forskellige årsager, men forekommer kun, når tilpasningsmekanismerne fejler.

Langtids tab af muskel energi, umuligheden af ​​selvsyntese i fravær af komponenter (især ilt, vitaminer, glukose, aminosyrer) fører til et udtyndingslag af actomyosin, bryder forbindelsen mellem myofibriller og erstatter dem med fibrøst væv.

Denne sygdom kaldes dystrofi. Det ledsager

  • anæmi,
  • beriberi,
  • endokrine lidelser
  • forgiftning.

Opstår som følge heraf:

  • hypertension,
  • koronar aterosklerose,
  • myocarditis.

Patienter oplever følgende symptomer:

  • svaghed
  • arytmi,
  • fysisk dyspnø
  • hjertebanken.

I en ung alder kan tyrotoksikose, diabetes mellitus, være den mest almindelige årsag. Samtidig er der ingen åbenlyse symptomer på en forstørret skjoldbruskkirtel.

Den inflammatoriske proces i hjertemusklen kaldes myocarditis. Det ledsager både smitsomme sygdomme hos børn og voksne, og dem, der ikke er forbundet med infektion (allergisk, idiopatisk).

Udvikler i fokus og diffus form. Væksten af ​​inflammatoriske elementer inficerer myofibriller, afbryder stierne, ændrer nukleins aktivitet og individuelle celler.

Som følge heraf udvikler patienten hjertesvigt (ofte højre ventrikulær). Kliniske manifestationer består af:

  • smerte i hjertet;
  • rytmeafbrydelser;
  • åndenød;
  • dilation og pulsering af nakkevenerne.

Atrioventrikulær blokade af forskellig grad registreres på EKG.

Den mest kendte sygdom forårsaget af nedsat blodgennemstrømning til hjertemusklen er myokardisk iskæmi. Det flyder i form af:

  • angina angreb
  • akut myokardieinfarkt
  • kronisk koronar insufficiens
  • pludselig død.

Alle former for iskæmi ledsages af paroxysmal smerte. De kaldes figurativt "grædende sultende myokardium." Kurset og resultatet af sygdommen afhænger af:

  • hastighed af bistand
  • genopretning af blodcirkulationen på grund af collaterals;
  • muskelcellernes evne til at tilpasse sig hypoxi
  • dannelse af et stærkt ar

Hvordan hjælper du hjertemusklen?

De mest forberedte til kritiske påvirkninger forbliver folk involveret i sport. Det skal være tydeligt adskilt cardio, der tilbydes af fitnesscentre og terapeutiske øvelser. Ethvert cardio-program er designet til raske mennesker. Styrket fitness gør det muligt at forårsage moderat hypertrofi i venstre og højre ventrikel. Med det rigtige arbejde styrer personen sig selv belastningens tilstrækkelighed.

Fysisk terapi er vist for personer, der lider af nogen sygdom. Hvis vi taler om hjertet, så har det til formål at:

  • forbedre vævsregenerering efter et hjerteanfald;
  • styrke ribberne i rygsøjlen og eliminere muligheden for klemning af paravertebrale kar
  • "Spur" immunitet;
  • genoprette neuro-endokrin regulering
  • at sikre hjælpefartøjers arbejde.

Behandling med medicin er ordineret i overensstemmelse med deres virkningsmekanisme.

Til behandling er der for øjeblikket et tilstrækkeligt arsenal af værktøjer:

  • lindrende arytmier
  • forbedre metabolisme i kardiomyocytter;
  • øget ernæring på grund af udvidelsen af ​​koronarbeholdere;
  • øge modstanden mod hypoxi
  • overvældende fokus på excitabilitet.

Det er umuligt at joke med dit hjerte, det anbefales ikke at eksperimentere med dig selv. Helbredende midler kan kun ordineres og vælges af en læge. For at forhindre patologiske symptomer så længe som muligt er der behov for korrekt forebyggelse. Hver person kan hjælpe sit hjerte ved at begrænse indtagelsen af ​​alkohol, fedtholdige fødevarer og holde op med at ryge. Regelmæssig motion kan løse mange problemer.

Strukturen og princippet i hjertet

Hjertet er et muskulært organ hos mennesker og dyr, som pumper blod gennem blodkarrene.

Hjertefunktioner - hvorfor har vi brug for et hjerte?

Vores blod giver hele kroppen med ilt og næringsstoffer. Derudover har den også en rensende funktion, der hjælper med at fjerne metabolisk affald.

Hjertets funktion er at pumpe blod gennem blodkarrene.

Hvor meget blod gør en persons hjertepumpe?

Det menneskelige hjerte pumper omkring 7000 til 10.000 liter blod på en dag. Det drejer sig om 3 millioner liter om året. Det viser sig op til 200 millioner liter i livet!

Mængden af ​​pumpet blod inden for et minut afhænger af den aktuelle fysiske og følelsesmæssige belastning - jo større belastningen er, jo mere blod kroppen har brug for. Så hjertet kan passere gennem sig selv fra 5 til 30 liter om et minut.

Kredsløbssystemet består af omkring 65 tusind skibe, deres samlede længde er omkring 100 tusind kilometer! Ja, vi er ikke forseglede.

Kredsløbssystemet

Kredsløbssystem (animation)

Det menneskelige kardiovaskulære system består af to cirkler af blodcirkulation. Med hvert hjerteslag bevæger blodet i begge cirkler på én gang.

Kredsløbssystemet

  1. Deoxygeneret blod fra den overlegne og ringere vena cava går ind i højre atrium og derefter ind i højre ventrikel.
  2. Fra højre ventrikel skubbes blod ind i lungekroppen. Pulmonalarterierne trækker blod direkte ind i lungerne (før lungekapillærerne), hvor det modtager ilt og frigiver kuldioxid.
  3. Efter at have modtaget tilstrækkelig ilt, vender blodet tilbage til hjerteets venstre atrium gennem lungerne.

Great Circle of Blood Circulation

  1. Fra det venstre atrium bevæger blodet til venstre ventrikel, hvorfra det yderligere pumpes ud gennem aorta ind i den systemiske cirkulation.
  2. Efter at have passeret en vanskelig vej, kommer blod gennem de hule vener igen til højre i hjertet af hjertet.

Normalt er mængden af ​​blod udstødt fra hjertets ventrikler med hver sammentrækning det samme. Således strømmer et lige stort volumen blod samtidigt i de store og små cirkler.

Hvad er forskellen mellem vener og arterier?

  • Ærene er designet til at transportere blod til hjertet, og arteriernes opgave er at levere blod i modsat retning.
  • I blodårene er blodtrykket lavere end i arterierne. I overensstemmelse hermed skelnes arterierne af væggene med større elasticitet og tæthed.
  • Arterier mætter det "friske" væv, og venerne tager det "spildte" blod.
  • I tilfælde af vaskulær skade kan arteriel eller venøs blødning skelnes af blodets intensitet og farve. Arterial - stærk, pulserende, slår "springvand", blodets farve er lys. Venøs blødning med konstant intensitet (kontinuerlig strømning), blodets farve er mørk.

Den anatomiske struktur af hjertet

Vægten af ​​en persons hjerte er kun omkring 300 gram (i gennemsnit 250g for kvinder og 330g for mænd). På trods af den relativt lave vægt er dette uden tvivl hovedmuskel i menneskekroppen og grundlaget for dets livsvigtige aktivitet. Størrelsen af ​​hjertet er faktisk omtrent lig med en persons knytnæve. Atleter kan have et hjerte, der er en og en halv gange større end en almindelig person.

Hjertet er placeret i midten af ​​brystet på niveauet af 5-8 hvirvler.

Normalt ligger den nederste del af hjertet hovedsageligt i venstre halvdel af brystet. Der er en variant af medfødt patologi, hvor alle organer er spejlet. Det kaldes transponering af de indre organer. Lungen, hvorigennem hjertet ligger (normalt venstre), har en mindre størrelse i forhold til den anden halvdel.

Hjertens overflade ligger tæt på rygsøjlen, og fronten er forsvarlig beskyttet af brystbenet og ribbenene.

Det menneskelige hjerte består af fire uafhængige hulrum (kamre) divideret med partitioner:

  • to øverste venstre og højre atria;
  • og to nedre venstre og højre ventrikler.

Hjertets højre side omfatter højre atrium og ventrikel. Den venstre halvdel af hjertet er repræsenteret af henholdsvis venstre ventrikel og atrium.

De nedre og øvre hule vener går ind i højre atrium, og lungevene går ind i venstre atrium. De pulmonale arterier (også kaldet pulmonale stammen) udgangen fra højre ventrikel. Fra venstre ventrikel stiger den stigende aorta.

Hjertevægsstruktur

Hjertevægsstruktur

Hjertet har beskyttelse mod overstretching og andre organer, der kaldes perikardiet eller perikardieposen (en slags konvolut, hvor orgelet er lukket). Det har to lag: det ydre tætte bindemiddel, kaldet pericardiums fibrøse membran og den indre (perikardiale serøse).

Dette efterfølges af et tykt muskellag - myokard og endokardium (tyndt bindevæv indre membran i hjertet).

Selve hjertet består således af tre lag: epikardiet, myokardiet, endokardiet. Det er sammentrækningen af ​​myokardiet, der pumper blod gennem kroppens kar.

Vægrene i venstre ventrikel er cirka tre gange større end væggene til højre! Denne kendsgerning forklares ved, at funktionen af ​​venstre ventrikel består i at skubbe blod ind i det systemiske kredsløb, hvor reaktionen og trykket er meget højere end i de små.

Hjerteventiler

Hjerteventil enhed

Særlige hjerteventiler giver dig mulighed for konstant at holde blodgennemstrømningen i den rigtige retning (ensrettet retning). Ventilerne åbner og lukker en efter en, enten ved at lade blod ind eller ved at blokere vejen. Interessant er alle fire ventiler placeret i samme plan.

En tricuspidventil er placeret mellem højre atrium og højre ventrikel. Den indeholder tre specielle plade sash, der er i stand under sammentrækning af højre ventrikel for at give beskyttelse mod omvendt strøm (opblødning) af blod i atriumet.

Tilsvarende fungerer mitralventilen, kun den er placeret i venstre side af hjertet og er bicuspid i sin struktur.

Aortaklappen forhindrer udstrømning af blod fra aorta i venstre ventrikel. Interessant nok, når venstre ventrikel kontrakter, åbnes aortaklappen som følge af blodtryk på det, så det bevæger sig ind i aorta. Derefter bidrager den omvendte strøm af blod fra arterien i løbet af diastolen (hjertets afslapningstid) til lukningen af ​​ventilerne.

Normalt har aortaklappen tre folder. Den mest almindelige medfødte anomali i hjertet er bicuspid aortaklappen. Denne patologi forekommer hos 2% af den menneskelige befolkning.

En pulmonal (lungeventil) ventil på tidspunktet for sammentrækning af højre ventrikel tillader blod til at strømme ind i lungekroppen, og under diastolen tillader det ikke at strømme i modsat retning. Består også af tre vinger.

Hjerteskader og koronarcirkulation

Det menneskelige hjerte har brug for mad og ilt, såvel som ethvert andet organ. Fartøjer, der giver (nærende) hjertet med blod kaldes koronar eller koronar. Disse fartøjer afgrener sig fra aorta-basen.

Kardonarterierne forsyner hjertet med blod, de kransåre fjerner det deoxygenerede blod. De arterier, der er på overfladen af ​​hjertet, kaldes epikardiale. Subendokardial kaldes koronararterier gemt dybt i myokardiet.

Det meste af udstrømningen af ​​blod fra myokardiet sker gennem tre hjerteårer: stort, mellemt og lille. Danner den koronare sinus, de falder ind i højre atrium. Hjertets forreste og mindre blodårer leverer blod direkte til højre atrium.

Koronararterier er opdelt i to typer - højre og venstre. Sidstnævnte består af de forreste interventrikulære og kuvert arterier. En stor hjerteår forgrener sig i hjernens bageste, midterste og små blodårer.

Selv helt sunde mennesker har deres egne unikke træk ved koronarcirkulationen. I virkeligheden kan skibene se ud og placeres anderledes end vist på billedet.

Hvordan udvikler hjertet (form)?

For dannelsen af ​​alle kroppens systemer kræver fosteret sin egen blodcirkulation. Derfor er hjertet det første funktionelle organ, der opstår i kroppen af ​​et humant embryo. Det forekommer omtrent i den tredje uge af fosterudvikling.

Fosteret i starten er kun en klynge af celler. Men i løbet af graviditeten bliver de mere og mere, og nu er de forbundet og danner i programmerede former. Først dannes to rør, som dernæst smelter sammen. Dette rør er foldet og rushing ned danner en loop - den primære hjerte loop. Denne sløjfe er foran alle de resterende celler i vækst og bliver hurtigt udvidet, så ligger til højre (måske til venstre, hvilket betyder at hjertet vil være placeret spejllignende) i form af en ring.

Så normalt den 22. dag efter undfangelsen sker den første sammentrækning af hjertet, og på den 26. dag har fostret sin egen blodcirkulation. Yderligere udvikling involverer forekomsten af ​​septa, dannelsen af ​​ventiler og remodeling af hjertekamrene. Afdelingsformularen ved den femte uge, og hjerteventiler vil blive dannet af den niende uge.

Interessant nok begynder fostrets hjerte at slå med hyppigheden af ​​en almindelig voksen - 75-80 snit pr. Minut. Derefter er pulsen ved begyndelsen af ​​den syvende uge omkring 165-185 slag per minut, hvilket er den maksimale værdi efterfulgt af en afmatning. Den nyfødte puls er i området 120-170 snit pr. Minut.

Fysiologi - princippet om det menneskelige hjerte

Overvej i detaljer hjertets principper og mønstre.

Hjerte cyklus

Når en voksen er rolig, samler hans hjerte omkring 70-80 cyklusser pr. Minut. Et slag i pulsen svarer til en hjertesyklus. Med en sådan reduktionshastighed tager en cyklus ca. 0,8 sekunder. Af hvilken tid er atriell kontraktion 0,1 sekunder, ventrikler - 0,3 sekunder og afslapningsperiode - 0,4 sekunder.

Cyklens frekvens bestemmes af hjertefrekvensdriveren (en del af hjertemusklen, hvor impulser opstår, der regulerer hjertefrekvensen).

Følgende begreber er kendetegnet:

  • Systole (sammentrækning) - næsten altid betyder dette begreb en sammentrækning af hjertets ventrikler, hvilket fører til blodskub i arterielkanalen og maksimering af tryk i arterierne.
  • Diastol (pause) - den periode, hvor hjertemusklen er i afslapningsfasen. På dette tidspunkt er hjertets kamre fyldt med blod, og trykket i arterierne falder.

Så måling af blodtryk registrerer altid to indikatorer. F.eks. Tallene 110/70, hvad betyder de?

  • 110 er det øvre tal (systolisk tryk), det vil sige blodtrykket i arterierne på tidspunktet for hjerteslag.
  • 70 er det lavere tal (diastolisk tryk), det vil sige blodtrykket i arterierne på tidspunktet for hjertets afslappning.

En simpel beskrivelse af hjertesyklusen:

Hjertesyklus (animation)

På hjertet af afslapning er atrierne og ventriklerne (gennem åbne ventiler) fyldt med blod.

  • Opstår systole (sammentrækning) af atrierne, som giver dig mulighed for helt at flytte blodet fra atria til ventriklerne. Atriel sammentrækning begynder på stedet for tilstrømningen af ​​venerne ind i den, hvilket sikrer den primære kompression af deres mund og blodets manglende evne til at strømme tilbage i venerne.
  • Atria slapper af, og ventilerne adskiller atria fra ventriklerne (tricuspid og mitral) tæt. Opstår ventrikulær systole.
  • Ventricular systole skubber blod i aorta gennem venstre ventrikel og ind i lungearterien gennem højre ventrikel.
  • Herefter kommer en pause (diastole). Cyklen gentages.
  • For en pulsslag er der to hjerteslag (to systoler) betinget - først reduceres atrierne, og derefter ventriklerne. Ud over ventrikulær systole er der atrielsystolen. Atriens sammentrækning bærer ikke værdi i hjerteets målte arbejde, da i dette tilfælde er afslapningstiden (diastol) tilstrækkelig til at fylde ventriklerne med blod. Men når hjertet begynder at slå oftere, bliver atrielle systole afgørende - uden det ville ventriklerne simpelthen ikke have tid til at fylde med blod.

    Blodtrykket gennem arterierne udføres kun med kontraktion af ventriklerne, disse push-sammentrækninger kaldes pulser.

    Hjertemuskel

    Den unikke hjerte muskel ligger i sin evne til rytmiske automatiske sammentrækninger, vekslende med afslapning, som finder sted kontinuerligt i hele livet. Myokardiet (midtermuskulaturlaget i hjertet) af atrierne og ventriklerne er delt, hvilket gør det muligt for dem at indgå adskilt fra hinanden.

    Kardiomyocytter - hjertets muskelceller med en særlig struktur, der tillader specielt koordineret at transmittere en bølge af excitation. Så der er to typer af cardiomyocytter:

    • Almindelige arbejdstagere (99% af det samlede antal hjerte muskelceller) er designet til at modtage et signal fra en pacemaker ved hjælp af kardiomyocytter.
    • specielt ledende (1% af det totale antal hjerte muskelceller) kardiomyocytter danner ledningssystemet. I deres funktion ligner de neuroner.

    Ligesom skeletmuskulaturen er hjertets muskel i stand til at øge i volumen og øge effektiviteten af ​​sit arbejde. Hjertevolumenet af udholdenhedsudøvere kan være 40% større end for en almindelig person! Dette er en nyttig hypertrofi i hjertet, når den strækker sig og er i stand til at pumpe mere blod i et slag. Der er en anden hypertrofi - kaldet "sports hjerte" eller "tyr hjerte."

    Den nederste linje er, at nogle atleter øger muskelens masse, og ikke dens evne til at strække og skubbe igennem store mængder blod. Årsagen til dette er uansvarlige kompilerede træningsprogrammer. Absolut enhver fysisk træning, især styrke, bør bygges på basis af cardio. Ellers forårsager overdreven fysisk anstrengelse på et uforberedt hjerte myokardie dystrofi, hvilket fører til tidlig død.

    Hjerteledningssystem

    Hjertets ledende system er en gruppe af specielle formationer bestående af ikke-standardiserede muskelfibre (ledende kardiomyocytter), som tjener som en mekanisme til at sikre hjertesystemets harmoniske arbejde.

    Impulsbane

    Dette system sikrer hjerteautomatikken - excitering af impulser født i kardiomyocytter uden ekstern stimulering. I et sundt hjerte er den primære kilde til impulser sinusnoden (sinusnoden). Han leder og overlapper impulser fra alle andre pacemakere. Men hvis der opstår en sygdom, der fører til syndromets svaghed i sinusknudepunktet, overtager andre dele af hjertet sin funktion. Så den atrioventrikulære knudepunkt (det automatiske center i den anden rækkefølge) og bunden af ​​His (tredje-ordens AC) kan aktiveres, når sinusknudepunktet er svagt. Der er tilfælde, hvor de sekundære knuder forbedrer deres egen automatisme og under normal drift af sinusknudepunktet.

    Bihuleknuden er placeret i den højre bakkvands øverste bagvæg i umiddelbar nærhed af mundingen af ​​den overlegne vena cava. Denne knude initierer pulser med en frekvens på ca. 80-100 gange pr. Minut.

    Atrioventrikulær knudepunkt (AV) er placeret i den nedre del af højre atrium i det atrioventrikulære septum. Denne partition forhindrer spredningen af ​​impulser direkte ind i ventriklerne, omgå AV-noden. Hvis sinusknudepunktet svækkes, vil atrioventrikulatet overtage sin funktion og begynde at overføre impulser til hjertemusklen med en frekvens på 40-60 sammentrækninger pr. Minut.

    Derefter passerer den atrioventrikulære knude i bunden af ​​hans (atrioventrikulær bundt er opdelt i to ben). Det højre ben ryster til højre ventrikel. Venstre ben er opdelt i to halvdele.

    Situationen med venstre ben af ​​hans bundt er ikke fuldt ud forstået. Det antages, at venstrebenet af den forreste gren af ​​fibre rushes til den forreste og laterale væg i venstre ventrikel, og den bageste kant af fibrene tilvejebringer bagvæggen af ​​venstre ventrikel og de nedre dele af sidevæggen.

    I tilfælde af sinus knudehedens svaghed og den atrioventrikulære blokade er hans bundt i stand til at skabe pulser med en hastighed på 30-40 pr. Minut.

    Ledningssystemet uddyber og forgrener sig ud i mindre grene og omsider vender sig til Purkinje-fibre, der trænger ind i hele myokardiet og tjener som transmissionsmekanisme til sammentrækning af musklerne i ventriklerne. Purkinje-fibre er i stand til at initiere impulser med en frekvens på 15-20 pr. Minut.

    Exceptionelt veluddannede atleter kan have en normal hjertefrekvens i hvile op til det laveste optagne nummer - kun 28 hjerteslag pr. Minut! Men for den gennemsnitlige person, selv om det fører til en meget aktiv livsstil, kan pulsfrekvensen under 50 slag pr. Minut være et tegn på bradykardi. Hvis du har en så lav puls, bør du undersøge af en kardiolog.

    Hjerterytme

    Den nyfødte hjertefrekvens kan være omkring 120 slag pr. Minut. Ved opvæksten stabiliseres pulsen hos en almindelig person i området fra 60 til 100 slag pr. Minut. Veluddannede atleter (vi taler om personer med veluddannede kardiovaskulære og respiratoriske systemer) har en puls på 40 til 100 slag pr. Minut.

    Hjertets rytme styres af nervesystemet - den sympatiske styrker sammentrækningerne, og den parasympatiske svækker.

    Hjerteaktiviteten afhænger i et vist omfang af indholdet af calcium og kaliumioner i blodet. Andre biologisk aktive stoffer bidrager også til regulering af hjerterytme. Vores hjerte kan begynde at slå oftere under påvirkning af endorfiner og hormoner, der udskilles, når du lytter til din yndlingsmusik eller kys.

    Endvidere kan det endokrine system have en signifikant virkning på hjerterytmen - og på hyppigheden af ​​sammentrækninger og deres styrke. For eksempel forårsager frigivelsen af ​​adrenalin ved binyrerne en stigning i hjertefrekvensen. Det modsatte hormon er acetylcholin.

    Hjertetoner

    En af de nemmeste metoder til at diagnosticere hjertesygdom lytter til brystet med et stethofonendoskop (auskultation).

    I et sundt hjerte, når man udfører standard auscultation, høres kun to hjertelyde - de kaldes S1 og S2:

    • S1 - lyden høres, når de atrioventrikulære (mitral og tricuspid) ventiler lukkes under systole (sammentrækning) af ventriklerne.
    • S2 - lyden, der laves ved lukning af semilunar- (aorta- og lungeventilerne) ventiler under diastol (afslapning) af ventriklerne.

    Hver lyd består af to komponenter, men for det menneskelige øre fusionerer de ind i en på grund af den meget lille tid mellem dem. Hvis der under normale auskultionsbetingelser bliver yderligere toner hørbare, kan dette tyde på en sygdom i det kardiovaskulære system.

    Nogle gange kan der høres yderligere uregelmæssige lyde i hjertet, som kaldes hjertelyde. Tilstedeværelsen af ​​støj indikerer som regel hjertets patologi. For eksempel kan støj forårsage, at blodet vender tilbage i modsat retning (regurgitation) på grund af forkert drift eller beskadigelse af en ventil. Støj er imidlertid ikke altid et symptom på sygdommen. For at præcisere årsagerne til udseendet af yderligere lyde i hjertet er at lave en ekkokardiografi (ultralyd i hjertet).

    Hjertesygdom

    Ikke overraskende vokser antallet af hjerte-kar-sygdomme i verden. Hjertet er et komplekst organ, der rent faktisk hviler (hvis det kan kaldes hvile) kun i intervallerne mellem hjerteslag. Enhver kompleks og konstant arbejdsmekanisme i sig selv kræver den mest omhyggelige holdning og konstant forebyggelse.

    Bare forestil dig, hvad en uhyrlig byrde falder på hjertet, givet vores livsstil og lav kvalitet, rigelig mad. Interessant nok er dødsfrekvensen fra hjerte-kar-sygdomme ret høj i højindkomstlande.

    De enorme mængder mad, der forbruges af de velhavende landes befolkning og den uendelige udøvelse af penge, samt de dermed forbundne belastninger, ødelægger vores hjerte. En anden grund til spredning af hjerte-kar-sygdomme er hypodynamien - en katastrofalt lav fysisk aktivitet, der ødelægger hele kroppen. Eller tværtimod, uvidende fascination af tunge motion, ofte forekommer på en baggrund af hjertesygdomme, hvis tilstedeværelse folk ikke engang ved, og formår at dø lige på det tidspunkt, "wellness" aktiviteter.

    Livsstil og hjertesundhed

    De vigtigste faktorer, der øger risikoen for udvikling af hjerte-kar-sygdomme, er:

    • Fedme.
    • Højt blodtryk
    • Forhøjet blodcholesterol.
    • Hypodynamien eller overdreven motion.
    • Rigelig mad af lav kvalitet.
    • Deprimeret følelsesmæssig tilstand og stress.

    Gør læsningen af ​​denne store artikel et vendepunkt i dit liv - opgive dårlige vaner og ændre din livsstil.